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Abstract

Traditional parametric Value at Risk (VaR) estimates assume normality in financial returns data. 
However, it is well known that this distribution, while convenient and simple to implement, 
underestimates the kurtosis demonstrated in most financial returns. Huisman, Koedijk and Pownall 
(1998) replace the normal distribution with the Student’s t distribution in modelling financial returns 
for the calculation of VaR. In this paper we extend their approach to the Monte Carlo simulation of 
VaR on both linear and non-linear instruments with application to the South African equity market. 
We show, via backtesting, that the t distribution produces superior results to the normal one. 
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1 
Introduction

The Value at Risk (VaR) of a portfolio of 
financial instruments at the confidence level 
x is given by the smallest number l such that 
the probability that the loss L exceeds l is no 
larger than (1–x).1 It is intended to calculate 
the maximum possible loss on the value of 
the portfolio over a specific time period with 
a certain level of confidence (McNeil et al., 
2005) and answers the question ‘How much can 
I lose with x per cent probability over a certain 
holding period?’ (JP Morgan/Reuters, 1996). 
VaR is appealing in that it attempts to provide 
a single number summarising the market risk in 
a portfolio of assets and expresses this directly 
by assigning a monetary value to the potential 
losses in the portfolio (Hendricks, 1996; Hull, 
2006). It has become a risk measure which 
is widely-used by financial institutions, both 
for internal risk management and regulatory 
reporting purposes and has also made its way 
into the Basel II capital-adequacy framework 
(Hendricks, 1996; Mc Neil et al., 2005, Van den 
Goorbergh, 1999). 

Methodologies for calculating VaR are divided 
into parametric and non parametric approaches. 

The difference between the two is in the way 
the distribution of expected returns is derived. 
In the former, returns are assumed to mimic a 
period in the past while the latter methodology 
assigns an actual probability distribution to the 
underlying risk factors.

The benefits of parametric versus non-
parametric methods are discussed in the 
literature with mixed views expressed (see, 
for example, Brooks & Persand, 2000). The 
main disadvantage of historical simulation, a 
non-parametric method, is the heavy reliance 
on past data since, under this method, the 
potential profits and losses on the portfolio 
under consideration are calculated by assuming 
that the returns that occurred in the past will be 
repeated in the future (Hull, 2006; Mc Neil et 
al., 2005). The VaR at a confidence level of x per 
cent is just the (1–x) percentile of the potential 
profits and losses calculated using past returns. 
This implies that the VaR number used looks 
only at returns on one or two days whereas the 
parametric approach draws information from 
the entire distribution of returns. This is an 
advantage of parametric over non-parametric 
methodologies (Brooks & Persand, 2000). 

The common assumption in calculating VaR 
under the parametric approach is to assume that 
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financial returns follow a normal distribution. 
This is largely a function of simplicity and 
convenience since the normal distribution is 
specified with only two parameters and is easily 
applied to the calculation of portfolio profits 
and losses. In practice, financial returns exhibit 
kurtosis or ‘fat tails’ that are not captured by 
the normal assumption, notably, the number 
of returns in the tails is greater than would be 
expected from a normal distribution. In other 
words, financial returns show more extreme 
movements than would be predicted by the 
normal distribution (Resnick, 2007). Since VaR 
focuses on the tail of the distribution, or the 
extreme returns, attempting to quantify losses 
with a high degree of confidence (99 per cent 
for regulatory reporting), this insufficiency 
is particularly relevant here.2 A number of 
alternative distributions such as Pareto and Sum 
Stable have been considered in the literature, 
but implementation has proved difficult 
(Huisman et al., 1998). Various other techniques 
for incorporating kurtosis have also been 
considered (see, for example, Hull & White, 
1998), but these tend to lack the simplicity of 
assuming normality. The Student’s t distribution 
is, however, much more successful than the 
normal distribution in capturing the fatness in 
the tails of financial returns’ distributions and 
requires little more effort than the latter to 
implement.

This paper focuses on parametric methods. In 
particular, we extend the work of Huisman et 
al. (1998), who fit the Student’s t distribution to 
financial return series, to include the calculation 
of VaR using Monte Carlo simulation as well as 
estimating the VaR on non-linear instruments. 
We apply the methodology to the South African 
equity market where we find that the Value at 
Risk estimated using the Student’s t distribution 
is more conservative than the traditional 
parametric method that assumes a normal 
distribution of returns. We show this for a linear 
position in equity as well as for an investment 
in options (non-linear instruments). Since a 
single VaR number is insufficient proof that 
one model consistently outperforms another, 
we then apply the model to a period in history 
including the recent credit crunch and compare 
actual losses to those predicted by the VaR 

models. This process is called backtesting. The 
results show that replacement of the normal 
distribution with the Student’s t distribution in 
VaR calculations results in a consistently more 
accurate VaR calculation (both in number and 
size of exceptions). Thus using the t distribution 
reduces the capital charge for the financial 
institution. We also find that, due to the shape 
of the t distribution (fatter tails than the normal, 
but less pronounced in the region between the 
centre and the tails), the higher the confidence 
level for which we estimate VaR, the greater the 
performance of the t distribution relative to the 
normal one. 

The paper is arranged as follows: in Section 
2, we describe the dataset used. Since the most 
common assumption in parametric Value at 
Risk calculation methodologies is that the 
returns data are normally distributed, we begin 
with a brief empirical investigation of this 
assumption which is intended to show simply 
that the Student’s t distribution provides a much 
better fit to the tails of the financial data than 
the normal distribution. Section 3 is a brief 
introduction to the t distribution, including a 
goodness-of-fit test, while Section 4 describes 
the methodology used in calculating the VaR 
of the equities and equity derivatives that we 
use as illustrative examples. In Section 5 we 
show the results obtained by applying both 
the normal and Student’s t distributions to 
the South African equity market. Section 6 
shows the results of backtesting the respective 
methods over the past year. Section 7 provides 
a conclusion and Section 8 some suggestions for 
further research.

2 
Investigating the normality 

assumption

2.1	 Data

A history of the daily closing level of the 
South African FTSE/JSE Top 40 index, which 
comprises forty South African equities weighted 
by market capitalisation, was obtained from 
Bloomberg for the ten year period beginning on 
18 September 1998 and ending on 19 September 
2008. 
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A history of daily closing prices for the 
following stocks was also obtained for the same 
period: Standard Bank (SBK), Anglogold 
Ashanti (ANG) and Pick ’n Pay (PIK). These 
are chosen as representative of the South 
African financial, mining and retail sectors 
respectively. 

The daily log returns were then obtained by 
dividing each day’s closing price by the previous 
day’s close and taking the log of the return as 
follows:

rt = ln S
S
t

t

1-

c m,  t = 2,3,...,N 

where	 rt  is the return3 for day t, t = 2,3,...,N
	 St is the index level on day t, t = 2,3,...,N
	 N is the number of daily closing prices in the time series

The summary statistics for the daily returns data are presented in the table below.

Table 1 
Summary statistics for daily log returns time series 

no. of 
returns

mean median maximum minimum standard 
deviation

skewness excess 
kurtosis

2,500 0.07% 0.09% 6.39% –8.39% 0.0135 –0.0883 2.5319

2.2	 Viewing tails graphically

Fitting a normal distribution to a histogram4 of 
the entire history of the Top 40 daily returns data 

reveals the poor fit in the tails of the distribution 
as shown in Figure 1 below.

Figure 1 
Histogram of Top 40 returns with normal distribution fitted 
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This is perhaps even more apparent in the 
QQ plot in Figure 2 below. Here, normally 
distributed data fall on the straight line. It is 
clear that the differences between the daily 
returns data in our sample and the normal 

distribution are most apparent in the tails which 
are crucial in estimating Value at Risk. The 
reason for the emphasis on the tails is that, in 
calculating VaR, it is extreme losses with which 
we are concerned.

Figure 2 
QQ plot for Top 40 returns data

3 
Introducing the Student’s t 

distribution

The Student’s t distribution is characterised by 
the degrees of freedom (DoF) parameter. The 
DoF or tail index measures the speed at which 
the tail approaches zero, that is to say, the speed 
at which the probabilities of extreme events 
approach zero. Thus, the fatter the tail, in other 
words, the greater the kurtosis exhibited by the 
data, the slower the speed with which the tail 
approaches zero and the lower the index. When 
the degrees of freedom approach infinity, the 
t distribution approaches normality (Evans et 
al., 1993 and Huisman et al., 1998). The rest of 
the characteristics of the normal distribution, 

such as symmetry, are thus echoed by Student’s 
t. This means that, in applying the latter in 
calculating VaR, we are correcting for only 
one of the potentially many flaws encountered 
by using the normal distribution. However, 
in estimating VaR, the lack of kurtosis in the 
normal distribution is arguably the most critical 
assumption.

The graphs above (figures 1 and 2) are 
repeated below, but this time with the t 
distribution fit illustrated next to the normal 
one. These show clearly that the t distribution 
is more appropriate in accounting for the tails 
in the Top 40 returns data than the normal 
distribution. This is even more apparent in 
Figure 5 below where we zoom in on the right 
tail of the distribution.
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Figure 3 
Histogram of Top 40 returns with normal and t distributions fitted

Figure 4 
Probability plots with normal and t distributions fitted
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Figure 5 
Right tail of the histogram of top 40 returns with normal and t distributions fitted

A Chi-square goodness-of-fit test is used 
to assess the hypothesis that a set of data 
comes from a specified distribution against 
the alternative that it does not5. For the Top 
40 returns series discussed in Section 2.1 of 
this paper, we conducted two Chi-square 
goodness-of-fit tests, one for the hypothesis 
that the data follow a normal distribution and 
one for the hypothesis that they come from a 
Student’s t distribution. In the first test, the 
null hypothesis of normality was rejected while 
in the latter, the null hypothesis of a Student’s 
t distribution could not be rejected at a 95 per 
cent level of confidence6. While the results serve 
only to cement our case, the superiority of the 
t distribution can clearly be seen in the tails in 
the above graphs and that is the portion of the 
distribution with which we are most concerned 
in the calculation of VaR. 

4 
Methodology

4.1	 Monte Carlo simulation

The calculation of VaR via Monte Carlo 
simulation has the advantage of being extremely 

flexible in the diversity of instruments for 
which it caters. While the method can be time 
consuming, there are a number of techniques 
available for speeding up computation time. 
We use Monte Carlo simulation for all VaR 
calculations in this paper. We focus on Daily 
Value at Risk (DVaR) which is the VaR for a 
one day holding period.

The method involves generating many 
scenarios for the underlying risk factors. The 
value of the underlying stock price or index level 
is calculated according to the formula:

St+1 (i) = S et
ivf ^ h	 (1)

where	 St is the level of the index or equity spot 
	 price on day t (the most recent day for 
	 which we have information)

	 St+1 (i) is the simulated value of the 
	 spot price in scenario i on day t+1, the 
	 day for which we are calculating VaR

	 s is the daily volatility of the stock 
	 price/index level returns7

	 e(i) is a standard normal random 
	 variable when the underlying distri- 
	 bution of returns is assumed to be 
	 normal and e(i) is sampled from the 
	 Student’s t distribution with the appro- 
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	 priate degrees of freedom when the 
	 underlying returns’ distribution is 
	 assumed to be the Student’s t.8

The portfolio for which we are calculating VaR is 
then revalued in each of the scenarios for which 
we have simulated spot prices and the profit and 
loss calculated in each scenario. The (1–a)th 
percentile of the generated portfolio values is 
then the VaR at an ath level of confidence (Hull, 
2006). In other words, we expect the loss on the 
portfolio to breach this value only (1–a) per 
cent of the time.

When the scenarios are generated from a 
t distribution, we follow the terminology of 
Huisman et al. (1998) and call the Value at 
Risk number generated VaR-X. When the usual 
assumption of normality is employed, we call the 
VaR number VaR-N. This will avoid confusion 
later in the paper.

4.2	 Parameterising the Student’s t  
	 distribution 

The number of degrees of freedom of the 
Student’s t distribution is estimated using the 
Hill estimator. This methodology was first 
published by Hill in 1975 (Hill, 1975) and is 
applied by Huisman et al. (1998).9 

The Hill Estimator is given as: 

ln lnk k x – x1
n j n k

j

k
1

1
=c - + -

=
^ h ! 	 (2)

where	 xi is the i’th increasing order statistic 
	 based on absolute values of observations
	 and k is the number of tail observations 
	 (Hill, 1975). Thus the estimator is a 
	 function of the number of tail obser- 
	 vations specified.

A modified version of the Hill Estimator for 
small samples can also be utilised (see Huisman 
et al., 1998).

The tail index or degrees of freedom of the 
Student’s t distribution is then the inverse of the 
Hill Estimator (Huisman et al., 1998).

5 
Results

5.1	 VaR-X versus VaR-N – linear position

For the three representative stocks as well as 
the index in our dataset, we estimate the DoF of 
the Student’s t distribution using the full history 
obtained and assuming that an observation three 
standard deviations from the mean constitutes 
a tail event.10

For a linear position of 10,000 ALSI contracts 
(assuming a contract size of 10 South African 
Rand (ZAR) per point) and long positions of  
1 000 000 shares in each of the three single 
stocks, we obtain the results for VaR-N and 
VaR-X on 18 September 2008 for a one day 
holding period in Table 2 below. These values 
are calculated using Monte Carlo Simulation as 
described in Section 4.

Table 2 
Value at Risk results at various confidence levels on 18 September 2008

Table 2 Continued
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It is clear from the above table that, at high 
confidence levels, VaR-X produces a more 
conservative VaR estimate than VaR-N. As we 
move further out of the tails, in other words, 

as we lower the confidence level of the VaR 
estimate, VaR-N becomes more appropriate 
than VaR-X. This is illustrated in Figures 6 to 
9 below.

Figure 6 
VaR-X and VaR-N for Top 40

Figure 7 
VaR-X and VaR-N for SBK

Figure 8 
VaR-X and VaR-N for ANG

Figure 9 
VaR-X and VaR-N for PIK

The above graphs also show that the magnitude 
of the difference between VaR-X and VaR-N 
increases the deeper into the tail we move. The 
actual differences between VaR-X and VaR-N 
are illustrated in Figure 10 below.

In Figure 11 these differences are scaled by 
the VaR-N value which shows that the relative 
VaR difference is not merely attributable to 
the Value at Risk being larger for a higher 
confidence level.
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Figure 10 
Actual differences between VaR-X and VaR-N for various confidence levels 

Figure 11 
Percentage differences between VaR-X and VaR-N for various confidence levels

As mentioned above, since regulatory VaR is 
calculated at a 99 per cent significance level, it is 
clear that a distribution such as Student’s t with 
greater kurtosis than the normal distribution is 
important in calculating VaR. These differences 
in risk numbers could be magnified many times 
in the large trading books held by financial 
institutions.

5.2	 Extension to non-linearity

Having considered a linear position in the index 
and stocks, we now look at the more complex 
case of a call option, with the index and stocks 
as the underlying reference entities11. The Value 
at Risk is then calculated for 1 000 000 ATM 
call options on the index and each of the stocks. 
The results are illustrated in Figures 11 and 12 
below. The percentage differences and patterns 
in the VaR numbers produced are similar to 
those for the linear position above. However, for 
the single stocks, the VaR-X estimate becomes 
more conservative than the VaR-N value from 
less deep in the tails. 
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Figure 12 
Difference between ATM call option VaR-N and VaR-X values

Figure 13 
Percentage difference between ATM call option VaR-N and VaR-X values

5.3	 Varying the degrees of freedom

Since the parameterisation of the Student’s t 
distribution is dependent on the number of tail 
observations, k, in the dataset, which is partly a 
subjective choice, we calculate the VaR on 18 
September 2008 for various choices of k (based 
on the number of standard deviations from the 

mean we term tail observations as well as the 
size of the dataset). 

The table below shows the DoF parameter 
that gave the lowest VaR number. Where 
‘normal’ appears in the table, the VaR-N value 
was more conservative than any of the VaR-X 
values.

Table 3 
DoF value producing most conservative VaR estimate for various confidence levels


