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Abstract

Accurate modelling of volatility is important as it relates to the forecasting of Value-at-Risk 
(VaR). The RiskMetrics model to forecast volatility is the benchmark in the financial sector. In an 
important regulatory innovation, the Basel Committee has proposed the use of an internal method 
for modelling VaR instead of the strict use of the benchmark model. The aim of this paper is to 
evaluate the performance of RiskMetrics in comparison to other models of volatility forecasting, 
such as some family classes of the Generalised Auto Regressive Conditional Heteroscedasticity 
models, in forecasting the VaR in emerging markets. This paper makes use of the stock market 
index portfolio, the All-Share Index, as a case study to evaluate the market risk in emerging markets. 
The paper underlines the importance of asymmetric behaviour for VaR forecasting in emerging 
markets’ economies. 

Keywords: Value-at-Risk, volatility, emerging markets
JEL G17

1 
Introduction

Accurate modelling of volatility in the financial 
market is important, particularly as it relates to 
the modelling of Value-at-Risk (VaR) and the 
forecasting of market risk. The RiskMetrics 
model to forecast volatility has been the 
benchmark for estimating VaR in the covariance 
VaR methodology, and the market risk in 
the financial sector since its inception by J.P. 
Morgan in 1994. It is important to note that 
VaR, which refers to the amount of money a 
portfolio is likely to lose over some predefined 
period at a given confidence level, is one of the 
most important measures of market risk and is 
widely used by financial institutions, portfolio 
managers and bank regulators. As far as market 
risk is concerned, it is defined as the uncertainty 
of future earnings resulting from changes in 
market conditions such as the prices of assets 
and interest rates (Das, 1997).

In order that regulators may monitor bank 
solvency and systemic risk effectively, they require 
that banks provide them with measurements 
of market risk using VaR models. With VaR 
estimation, financial institutions have a sense 
of the minimum amount that is expected to be 
lost with a given probability, , also known as the 
level of significance, over a given time horizon, 
h, usually one day or 10 days. For example, with 
a  = 5 per cent, a one-day VaR of 10 million 
currency units tells us that for every one out of 
20 days, we could expect to realise a loss of at 
least 10 million. Alternatively, we could say that 
the maximum loss we could expect on 19 out of 
20 days is 10 million.

Following the 1996 amendment to the Basel 
Accord on Bank Regulation and Supervision, 
banks are now permitted to use internally 
developed volatility models to calculate their 
VaR thresholds, as opposed to the “standardised” 
RiskMetrics approach which received wide-
spread criticism for being too conservative 
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are traded. As such, it is a completely diversified 
portfolio, which means that all the unique risks 
of the individual shares are cancelled out.

Compared to emerging market economies, 
developed markets are not considerably affected 
by asymmetric behaviour or any leverage effect 
in their equity markets. Hagerud (1997) found 
that few developed market economies show 
signs of asymmetric volatility clustering and, 
therefore, VaR forecasting based on asymmetric 
volatility models, while appropriate for the 
emerging market, is not applicable to developed 
market economies. Furthermore, Alexander 
(2001) contends that the RiskMetrics volatility 
provides the best option for VaR estimation 
in a number of developed market economies 
but not emerging markets’ economies. These 
findings warrant scrutiny for the comparison of 
the different volatility models used to estimate 
the VaR for emerging market economies.

The paper is subdivided as follows: the 
RiskMetrics model, as the benchmark model 
for volatility and VaR estimation, is discussed 
in Section 2. Section 3 discusses the GARCH 
model. In Section 4, the asymmetric E-GARCH 
model is presented. The focus of this section 
is on the asymmetric behaviour prevalent in 
the financial market. Section 5 presents the 
theoretical background on the VaR concept 
and Section 6 provides a preliminary analysis 
of the data with the aim of estimating volatility 
and calculating VaR, as well as comparing the 
different VaR estimation models. Section 7 
concludes the paper.

2 
The benchmark model: riskmetrics 

RiskMetrics uses the exponentially weighted 
moving average (EWMA) of historical obser-
vations to forecast volatility. Future forecasts 
are heavily dependent on the most recent data 
and are not influenced too much by old or very 
remote historic data. In the EWMA model, 
the weights decrease exponentially as we move 
back through time (Morgan and Reuters, 1996: 
78). Furthermore, the RiskMetrics model 
assumes that asset or portfolio returns have a 
conditional multivariate normal distribution and 
are generated as follows:

(Alexander, 1996). While the amendment 
was designed to reward those institutions with 
superior risk management systems, a back-
testing procedure (or performance assessment 
tool) was introduced to assess the quality of the 
internal models whereby the realised returns are 
compared with VaR forecasts. If a bank’s VaR 
forecasts from its internal model are violated 
more than ten times in a financial year, then a 
penalty is imposed and the bank may also be 
required to adopt the standardised approach. 
The imposition of such a penalty is severe, as 
it has a direct impact on the profitability of the 
bank through higher capital charge, and may 
also damage the bank’s reputation. 

In order to estimate VaR, one needs proper 
volatility modelling of the asset or portfolio in 
question. It is the prediction of future volatility 
that needs to be accurate in order to have a 
sound VaR model which satisfies regulatory 
requirements by passing the back-testing check. 

The aim of this paper is to assess different 
models of volatility forecasting for emerging 
financial markets, in order to determine which 
volatility model is appropriate for the modelling 
of VaR in the emerging markets’ context. The 
performance of the proposed models of volatility 
in forecasting VaR will then be compared to that 
of the RiskMetrics methodology. 

Contrary to the RiskMetrics estimation of 
VaR that uses a normal distribution hypothesis, 
the conventional wisdom seems to be that, in 
the case of emerging markets, it is necessary 
to use more sophisticated volatility models, as 
well as non-normal distributions in order to 
forecast market risk adequately. Some of the 
return distributions of emerging markets’ equity 
indices may possess “fat tails” (Zangari, 1996). 
Using data on equity exposure, consisting of 
the All-Share Index as a stock market index 
portfolio traded in the Johannesburg Stock 
Exchange (JSE), this paper compares the 
performance of the different models of volatility 
of the Generalised Autoregressive Conditional 
Heteroscedasticity (GARCH) family, to the 
RiskMetrics model in modelling the VaR in 
an emerging market economy. The All-Share 
Index, as a stock market index portfolio, is made 
up of all the JSE-listed shares that meet specific 
criteria, such as size and the extent to which they 
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 is a constant parameter called the decay factor. 
Its value is between zero and unity (0 <  < 1).  
The sample mean return, r, is assumed to be 
zero. This is clear from the expected return 
from Equation 1. The error term, t, is standard 
normally distributed. The advantage of the 
EWMA in estimating volatility is that, if there 
is a big move in the previous returns, (r2

t-1), this 
increases the current volatility estimate. The 
responsiveness of volatility to changes in returns 
is limited by the size of . A high  close to one 
produces estimates that are slow to react to new 
information, and a low  allocates a greater 
weight to return when updating volatility and the 
estimates become highly volatile on successive 
days. 

RiskMetrics uses  equal to 0.94 and  equal 
to 0.97 for daily and monthly volatility updates 
respectively. These  values were found to give 
the closest forecast variance to realised variance 
after a study of different market variables using 
the root mean square error (RMSE) criterion 
(Hull, 2003). 

The main characteristic of the RiskMetrics 
model is that the variance in Equation 2 can 
be written as an EWMA of the past innovation 
and return. The reparametrisation of Equation 
2 yields:
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The smaller the smoothing parameter, the 
greater the weight given to the recent return 
data. 

As it assumes normally distributed returns, 
the RiskMetrics model completely ignores 
the presence of “fat tails” in the distribution 
function even though these are an important 
feature of financial data. 

3 
GARCH models

In the case of financial data, large returns 
are followed by more large returns, and small 
returns by more small returns. This suggests 

that returns are serially correlated. GARCH 
models have been developed to account for 
empirical irregularities in financial data. A time 
series displays conditional heteroscedasticity if 
it has highly volatile periods interspersed with 
tranquil periods, so that “bursts” or “clusters” 
of volatility occur. 

In practice, variance rates tend to be mean 
reverting and the RiskMetrics model’s use 
of the EWMA does not incorporate mean 
reversion. The Auto Regressive Conditional 
Heteroscedasticity (ARCH) models introduced 
by Engle (1982) are a particular type of the 
GARCH model. GARCH forecasts are designed 
to capture the “fat tails” in return distributions. 
Bollerslev (1986) generalises the ARCH (p) 
model to the GARCH (p, q) model.

The simplest GARCH (1,1) is specified as 
follows:
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at t t
2

1
2

1
2v = + +~ v bf- - 	 (6)

Equation 5 corresponds to the mean equation 
which is represented as a function of the vector 
of exogenous variables, Xt, and an error term t.rt  
represents the return series. Since t

2v  is the one 
period ahead forecast variance based on past 
information, it is called the conditional variance. 
The conditional variance equation specified in 
(6) is a function of three terms, namely:

–	 a constant term ; 

–	 news about volatility from the previous 
period, measured as the lag of the squared 
residual, t 1

2f - , from the mean equation. It 
constitutes the ARCH term; and

–	 the last period’s forecast variance, t 1
2v - , 

which constitutes the GARCH term.

In Equation 6, if one assumes that  +  = 1,  
 = 0  and  is replaced by , then GARCH (1,1) 
will be reduced to the Exponentially Weighted 
Moving Average (EWMA) as expressed in 
Equation 3. This shows that RiskMetrics models 
are a particular type of GARCH (1,1). 

It is worth noting that contrary to the Risk- 
Metrics model, which is based on the assumption 
of a constant volatility model with the implication 
of a constant term structure volatility forecast, 
with GARCH models the term structure 
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reflects the mean-reversion of volatility that 
is the common feature in the financial market 
(Alexander, 2001: 61).

4 
Asymmetric GARCH models

Empirical work by Engle and Ng (1993), Black 
(1976) and Christie (1982) found that stock 
returns are negatively correlated with changes 
in conditional volatility, that is, volatility tends 
to rise in response to bad news (excess returns 
lower than expected) and to fall in response 
to good news (excess returns higher than 
expected). The GARCH models, however, 
assume that only the magnitude and not the 
positivity or negativity of unanticipated excess 
returns determines variance. 

It is well established that the volatility of asset 
prices displays considerable persistence, that is, 
large movements in prices tend to be followed by 
more large movements, producing positive serial 
correlation in squared returns. Thus, current 
and past volatility can be used to predict future 
volatility. Empirical works by Black (1976) and 
Christie (1982) further document and attempt 
to explain the asymmetric volatility property of 
individual stock returns. The explanation for 
this asymmetry is due to leverage. A drop in 
the value of stock (negative return) increases 
financial leverage, which makes the stock riskier 
and increases its volatility. 

Bekaert and Wu (2000) show that the leverage 
effect in equities, as documented by Black 
(1976) and many others, determines a strong 
negative correlation between equity returns 
and volatility and is perhaps the most important 
source of skewness in equity index returns. 

Regarding why asymmetric volatility is more 
observed in emerging markets compared to 
established markets, Gokcan (2000) suggests 
that the extent of volatility is related to the stage 
of market development. Volatility in emerging 
markets is large and more persistent than that 
in developed markets. One explanation is the 
speed and reliability of information available 
to investors, which is associated with modes of 
telecommunication and possible accounting 
systems in place. For Habib (2002) emerging 
market economies are subjected to “volatility 

contagion” coming mostly from other emerging 
markets. This volatility contagion accelerates 
capital withdrawal by speculator investors and 
hence increases the leverage effect and the 
persistence of risk in emerging markets. The 
vulnerability of emerging markets to external 
shocks is the cause of the pronounced volatility 
mostly observed during periods of global 
crisis.

There are quite a number of asymmetric 
GARCH models among which are the Threshold 
GARCH (TARCH) and the Exponential 
GARCH (EGARCH). 

The EGARCH model captures the asymmetric 
effect and is written as (Engle and Ng, 1993):
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Where t
2v  is the conditional variance and ,  

and  are constant parameters. The asymmetry 
in the EGARCH model is attributed to the 
sign of the coefficient  in Equation 8. This 
coefficient is usually negative; therefore positive 
return shocks, t-1, generate less volatility than 
negative return shocks. In the EGARCH model, 
ln( t 1

2v - ) is homoscedastic conditional on t
2v . 

ln( t 1
2v - ) is a linear process and is stationary. The 

natural logarithm of the conditional variance 
on the left hand side implies that the leverage 
effect is exponential rather than quadratic and 
that a forecast of the conditional variance will 
be non-negative. The presence of leverage can 
be tested by the hypothesis that <0. 

5 
Value-at-Risk (VaR) analysis

VaR is one of the most important and widely 
used statistics that measures the potential risk 
of economic losses (Campbell at al., 2001). With 
VaR, financial institutions can get a sense of 
the likelihood that a loss greater than a certain 
amount would be realised. VaR is a measure 
of the maximum potential change in value 
of a portfolio of financial instruments with a 
given probability over a pre-set horizon. VaR 
answers the question “how much can one lose 
with x per cent probability over a given time 
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horizon” (Morgan and Reuters, 1996)? Thus a 
5 per cent 1-day VaR corresponds to a loss level 
that one expects to exceed, in normal market 
circumstances, in one day in twenty, and a 1 
per cent 1-day VaR is the loss level that might 
be seen in one day in a hundred.

There should be a strong relationship between 
VaR estimates and the absolute value of each 
day’s profit and loss. Large VaR figures should 
be accompanied by large profits or losses, while 
small VaR estimates should be associated with 
small profit and loss results.

There are different methods used to 
calculate the VaR of a portfolio or an asset. 
These methods are the historical simulation, 
the Monte Carlo simulation and the variance-
covariance (analytic VaR) method. Since 
the advent of RiskMetrics (as a measure 
of volatility), the VaR calculation based on 
variance-covariance has become the norm 
for financial institutions. In the variance-
covariance VaR methodology, the only data 
necessary to compute the VaR of a linear 
portfolio is a covariance matrix of all the 
assets in the portfolio, that is, the variances 
and covariances of the asset returns (Butler, 
1999). These can be measured using any of 
the volatility models, such as EWMA or the 
family of GARCH models. Due to its popular 
use for VaR calculation, this article will focus 

on the variance-covariance method for VaR 
calculation by comparing the benchmark 
model (RiskMetrics VaR) to the VaR measure 
calculated using other volatility measures such 
as the GARCH and EGARCH models. 

VaR estimation is important as far as the 
capital requirement of banking institutions is 
concerned. The 1996 agreement, concluded by 
the Basel Committee on banking supervision, 
called the BIS accord, requires banks to hold 
a certain amount of capital for credit as well as 
market risk. The agreement calculates capital 
for the trading book by using a VaR measure. 
The trading book consists of a number of 
different instruments that are traded by the 
bank such as stocks, bonds, forward contracts, 
and others. Such a trading book is normally 
re-valued daily. 

The Basel Committee agreement sets the 
capital required to be held by banks to be a 
certain multiple, k (multiplication factor), times 
the VaR measure of the instruments held by a 
given bank. For a bank with excellent well-tested 
VaR estimation procedures, i.e., the number of 
exceptions provided by the back-testing is in the 
green zone, it is likely that k will be set equal to 
the minimum value of 3. For other banks that 
fail to meet the requirement of a well-tested 
VaR estimation, the multiple k may be higher 
than the value of 3 (see Table 1). 

Table 1 
The Basel Committee’s three zones

Number of exceptions (250 days) Multiplication factor

Green zone 4 or less 3.0

Yellow zone

5

6

7

8

9

3.4

3.5

3.65

3.75

3.85

Red zone 10 or more 4

Source: Basel Committee on Banking Supervision (1995) 

Referring to Table 1 above, the green zone 
means the models are reliable and can be 
applied with confidence. The model fails if the 
following day’s price change is greater than the 

VaR calculated. The yellow zone means caution 
should be applied and further refinements of 
the model are needed. The red zone means the 
model is completely flawed and the regulator 
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will intervene and recommend increasing the 
scaling factor (Basel Committee on Banking 
Supervision, 1996). Therefore it is important 
that banks are always in the green zone in 
order not to have extra capital set aside for 
poor models.

Coming up with an excellent, well-tested VaR 
estimation is therefore a crucial concern for 
most banks. As stated above, the estimation of 
the best VaR forecast has to start with the best 
choice of volatility modelling.

Back-testing is an important procedure used 
to assess the accuracy of the VaR models. Under 
the proposed alternative Basel Committee 
approach, the supervisors will carry out “back-
testing”, that is, the comparison of actual 
trading results with model-generated risk 
measures. Banks have a choice of two alternative 
approaches to measure market risk. The first 
is the internal models approach, where banks 
are allowed to use proprietary in-house models 
for measuring market risks, subject to the 
fulfilment of a number of strict quantitative 
and qualitative criteria. The second is the 
standardised approach, where banks measure 
market risk according to a standardised 
measurement (RiskMetrics) method. 

The bank for international settlements (BIS) 
accord imposes a penalty on institutions whose 
VaR models perform poorly. Banks generally 
back-test risk models on a monthly or quarterly 
basis to verify accuracy. In these tests, banks 
observe whether trading results fall within pre-
specified confidence bands as predicted by VaR 
models. The Basel Committee recommends 
that back-testing be conducted based on a 1-day 
holding period even though the capital that a 
bank is required to hold against its market risk 
is based on VaR with a ten-day holding period 
(Basel Committee on Banking Supervision, 
1995). 

6 
Data analysis, methodology and 

empirical results

It is important to note that the selection and 
estimation of an excellent, well-tested variance-
covariance VaR model involves different steps. 

The following steps are pursued:

i.	 Selection and estimation of the best 
volatility model;

ii.	 Calculation of the VaR of an asset or 
portfolio for each day on a rolling basis. The 
rolling VaR is obtained by multiplying the 
daily volatility by the multiplication factor 
for the desired level of confidence (the 
multiplication factor is 1.645 for the 95 per 
cent confidence level and 2.33 for the 99 per 
cent confidence level) obtained from the 
cumulative probability distribution function 
for a standardised normal distribution; 

iii.	 Comparison of the VaR calculated for each 
day to the following day’s price change. If 
the following day’s price change is larger, 
then that day is an exception. The best VaR 
method should minimise the number of 
exceptions. Table 1 provides the guidance 
for a well-defined VaR model.

The empirical analysis presented in this section 
assumes that a financial institution holds 
a position on the All-Share Index, a stock 
market index portfolio traded on the JSE. This 
paper assesses which of the volatility models – 
RiskMetrics, GARCH and EGARCH – provides 
a better estimation of the VaR. The assessment 
criterion for the best VaR estimation is based on 
the back-testing procedure. Data used are the 
daily returns on the All-Share Index obtained 
from the I-Net Bridge bank of data and cover the 
period from 3 January 2005 to 31 October 2008, 
a total of 993 observations. While the first 743 
observations are used for in-sample forecasting 
of volatility, the last 250 observations are used 
for an out-sample forecast of volatility as well as 
VaR calculation and the back-testing procedure. 
A total of 250 observations are used for the out-
sample volatility forecast and VaR calculation to 
conform to the regulator’s recommendations. As 
in Table 1, regulators recommend using the last 
250 days of the data observations to back-test the 
1 per cent 1-day VaR (Alexander, 2001: 276).

Figure 1 below highlights the volatility 
clustering of the All-Share Index returns. The 
increase in volatility observed at the end of 
the sample period (around October 2008) is 
attributed to the increase in emerging financial 
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markets risks as a result of the global financial 
market turmoil. The time-varying volatility and 
the mean-reverting property of the variance 

rates described in Figure 1 provide an insight 
for the use of some family classes of GARCH 
techniques for volatility estimation.

Figure 1 
JSE All-share index returns

Source: Author’s construction from data

The in-sample estimation of the GARCH model 
of volatility is reported in Table 2. The best fit for 
the GARCH model is obtained from an AR(2)-
GARCH(1,1) where the mean and variance 
equations are represented as in equations 5 and 
6, respectively. The vector Xt contains rt-1 and 
rt-2, the first and second lag of returns on the 
All-Share Index. The estimation of the AR(2)-
GARCH(1,1) shows that the coefficients of the 
mean and variance equations are statistically 
significant. The paper used the standard criteria 
of the Box-Jenskin procedure, which suggests an 

AR(2) representation for the mean equation. 
According to the Box-Jenskin procedure, the 
autocorrelation and partial autocorrelation 
functions of a variable should suggest the 
structure of the autoregressive model. The 
goodness of fit of this model is confirmed with 
the plot of the correlogram of the residuals of the 
fitted model (not shown here). The Ljung-Box 
Q-statistics of the residuals of the fitted model 
indicated that the residuals autocorrelation 
and partial autocorrelation are not statistically 
significant.

Table 2 
Estimation of a AR(2)-GARCH(1,1) variance equation

Coefficients Std. error z-statistic Probability  

rt-1  0.251696 0.048610 5.177847 0.0000

rt-2 –0.100064 0.042914 –2.331742  0.0197

Variance equation

 0.00615 0.00362 1.697153 0.0897

0.08076 0.03134 2.576235 0.0100

 0.85145 0.05949 19.31165 0.0000

t 1
2f -

t 1
2v -
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R-squared 0.04530

Adjusted-squared 0.03835

Durbin-Watson statistics 2.03193

Likewise, the estimation of the EGARCH model 
is obtained from the AR(2)-EGARCH(1,1). 
Table 3 reports the estimation of the variance 
equation of the EGARCH model as in Equation 
8. The estimated coefficients of the variance 

equations are all statistically significant. 
Furthermore, the estimated coefficient of  is 
negative. This indicates that there is a leverage 
effect with negative return shocks generating 
more volatility than positive return shocks.

Table 3 
Estimation of a AR(2)-EGARCH(1,1) variance equation

Coefficient Estimate Standard error Z-statistics Probability

w –0.6430 0.300668 –2.138753 0.0325

a 0.16290 0.066781 2.439321 0.0147

b 0.94492 0.028636 32.99787 0.0000

g –0.1046 0.034457 –3.037118 0.0024

RiskMetrics volatilities are computed with the 
aid of Equation 4 with the value of  equal to 
0.94.

As far as the accuracy of the volatility forecast 
is concerned, Table 4 shows that the in-sample 
forecast obtained from an EGARCH model 

performs better than the rest of the models. 
Nevertheless, the performance of the GARCH 
model is very close to the EGARCH model. 
The criterion used for the comparison of the 
different volatility models is the root mean 
squared error (RMSE). 

Table 4 
In-sample performance of the volatility models

Model RMSE

EGARCH 0.008162

GARCH 0.008178

RiskMetrics 0.013075

The last step of this analysis consists of 
forecasting the one-day VaR from each of 
the three volatility models using a 99 per 
cent confidence level. As stated earlier, 250 
observations are needed for VaR calculation and 
the back-testing of each model. Observations 
from 19 November 2007 to 31 October 2008 (a 
total of 250 observations) are used for out-of-
sample forecast of the RiskMetrics, E-GARCH 
and GARCH volatility models as well as the 

VaR estimation. The one-day time horizon and 
the 99 per cent level of confidence used in the 
VaR estimation conform to the regulation of 
the Basel Committee. Figures 2, 3 and 4 depict 
the trends of the estimated VaR obtained from 
EGARCH, RiskMetrics and GARCH volatility 
measures, respectively. In the same figures, VaR 
estimations are compared with the realised 
returns of the All-Share Index. The comparison 
of the VaR estimation and the realised returns 
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provides the back-testing mechanism, whereby 
the violation of the model occurs when the 
negative value of the return on the index 
exceeds the VaR estimation. Back-testing is 
relevant for gauging the reliability of the VaR 
model. The results of the VaR back-testing 
as in Figure 2, Figure 3 and Figure 4 are 
summarised in Table 5. The results of the VAR 
back-testing show that there is no violation for 
the VaR obtained from the GARCH model 
and only one violation for the VaR obtained 

from the EGARCH model. This indicates that 
the two models perform well as the number 
of violations is limited to the green zone. The 
VaR values obtained using the RiskMetrics 
model show a total of 5 violations. This 
number of violations puts the VaR obtained 
using RiskMetrics into the yellow zone. With 
this outcome caution should be exercised in 
applying the RiskMetrics volatility measures 
when estimating VaR for a position held in 
the All-Share Index.

Figure 2 
E-GARCH VaR back-testing

Source: own estimation

Figure 3 
RiskMetrics VaR back-testing

Source: own estimation
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Figure 4 
GARCH VaR back-testing

Source: own estimation

Table 5 
Back-testing results

Number of 
exceptions

Multiplication 
factor

RiskMetrics 
violation

GARCH violation EGARCH 
violation

Green zone 4 or less 3.0 0 1

Yellow zone

5

6

7

8

9

3.4

3.5

3.65

3.75

3.85

5

Red zone 10 or more 4

The results reported in Table 5 show that 
while the multiplication factor that applies to 
the VaR values obtained for the GARCH and 
EGARCH volatility measures is 3.0, this factor 
should increase to 3.4 for the VaR obtained 
using the RiskMetrics volatility methodology. 
This indicates that capital requirement should 
increase when use is made of the RiskMetrics 
methodology for the estimation of the VaR for 
a position held in the JSE All-Share Index. 

These findings should indicate that condi-
tional heteroscedasticity, the presence of 
changing volatility, should be taken into 
account for an appropriate estimation of VaR, 

under the variance-covariance method, in 
emerging markets. Furthermore, the asymmetric 
behaviour of volatility remains an essential 
element for volatility forecasting in emerging 
markets, though this paper shows that the 
symmetric model performs as well as the 
asymmetric model. This is probably due to the 
relative calmness of the JSE during most of the 
sample periods of the analysis, except the last 
period in our sample, namely October 2008. 
This period has been characterised by global 
financial turmoil that impacted on emerging 
financial markets.
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7 
Conclusion

This article evaluated the performance of the 
widely used RiskMetrics model to forecast 
volatility and ultimately calculate VaR, to 
other models of volatility such as the symmetric 
and asymmetric GARCH models. Use was 
made of a stock market index portfolio, the 
JSE All-Share Index, a market index traded 
in the JSE, for this end. The stock exchange 
chosen is an emerging market’s exchange. Our 
analysis shows that the EGARCH and GARCH 
models provide the best models for volatility 
forecasts and VaR estimation compared to the 
RiskMetrics model. These findings show that the 
assumptions of conditional heteroscedasticity 
as well as asymmetric volatility should be 
taken into account when estimating the VaR in 
emerging markets. The findings of this paper 
are relevant for a position held in the JSE All-
Share Index for a period from 3 January 2005 to 
31 October 2008. Nevertheless, we suggest that 
for further research, other portfolios, such as 
portfolios made up of bonds and equity assets, 
be considered. 
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