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Abstract

An important, yet neglected, aspect of risk management is liquidity risk; changes in value due to 
reduced availability of traded financial instruments. This ubiquitous risk has emerged as one of the 
key drivers of the developing “credit crunch” with global financial liquidity plummeting since the 
crisis began. Despite massive cash injections by governments, the crisis continues. Contemporary 
research has focussed on the liquidity component of single instruments’ value-at-risk. This work is 
extended in this article to measure portfolio value-at-risk, employing a technique which integrates 
individual instruments’ liquidity-adjusted VaR into a portfolio environment without a commensurate 
increase of statistical assumptions.
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1 
Introduction

The Basel Capital Accord, published in 1988, 
set down the agreement among the G-10 
central banks to apply common minimum 
capital standards to their banking industries 
by the end of 1992 (BIS, 1988). The standards 
largely addressed the main risk incurred by 
banks – credit risk – but five amendments to 
the Accord were agreed to subsequently and the 
fifth introduced parallel capital requirements 
for market risk. A key development of the Basel 
Accord was the introduction of value-at-risk 
(VaR), a measure to consolidate an institution’s 
market risk into a single number. The idea was 
embraced by the finance community and has 
subsequently come to dominate the field of 
market risk. 

Whilst VaR is not a complex quantity to calculate 
in principle, estimating its input parameters and 
determining both their robustness and validity 
are non-trivial. The late 1980s and most of the 
1990s witnessed a profusion of research articles 
dedicated to the refinement of the VaR measure 
(Risk Magazine, 2004 and sources therein). 
Exponential weighting techniques improved 
volatility and correlation estimates (JP Morgan, 
1996), GARCH1 introduced a mean-reverting 

volatility model (Alexander 2001 and sources 
therein), alternative distributions were applied 
to non-Gaussian data (Bouchaudy, 1999) and 
Extreme Value Theory became a popular 
measure to elucidate the structure in the data-
poor region of distribution tails (McNeil, 1996: 
121). Adjustments for portfolios with non-linear 
pay-off profiles – i.e. comprised in part of 
options or interest rate dependent instruments 
– were also introduced and are now standard 
fare (Ammann & Reich, 2001: 9).

Changes in market conditions as well as 
the size and nature of financial risk have 
necessitated the drafting and construction of 
Basel II – essentially a revised and augmented 
framework of Basel I (BIS, 2006). This revision, 
implemented in Europe in January 2008 (later 
in the USA), leaves the treatment of market 
risk largely unchanged from Basel I and instead 
focuses almost entirely upon the previously 
neglected areas of credit and operational risk2. 
A large number of research articles are now 
engaged in the exploration of the complexities of 
credit and operational risk: market risk articles 
have consequently diminished significantly 
in number (Risk Magazine, 2004). The VaR 
concept, however, has by no means been 
exhaustively explored: in its standard form it is 
still plagued by limiting assumptions, but some 
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of these standards evade deeper examination 
on the basis of being “widely-accepted”. One 
such feature is liquidity risk which, because of 
its tendency to compound other risks, is difficult 
to isolate and analyse. In all but the most simple 
of circumstances, comprehensive liquidity risk 
metrics do not exist and standard VaR models 
usually ignore liquidity risk completely. 

The growth in hedge funds worldwide since 
the early 2000’s, meanwhile, has been explosive, 
both in terms of number of funds and investment 
capital (Mulvey, 2003: 24 and HFRX, 2006) 
and there are increasing indications that the 
process is accelerating. Ever since the collapse 
of the Long Term Capital Management (LTCM) 
hedge fund in August 1998 hedge fund risk 
managers have been forced to concentrate ever 
more on liquidity risk (Lowenstein, 2002). It 
was this aspect of risk – more than any other 
– that brought LTCM to financial ruin. Despite 
this, no standard approach for measuring 
liquidity risk has emerged3. Liquidity-adjusted 
VaR models certainly exist, and some are fairly 
sophisticated (e.g. Cosandey, 2001: 116), but 
these are based upon single instrument VaR 
approaches and their application to portfolios 
is not uniform. Less sophisticated approaches 
such as those that rely on conventional measures 
of leverage to estimate liquidity risk sometimes 
provide meaningless results (Bangia, 1999: 70). 
In addition, the existence of both endogenous 
and exogenous liquidity risk (which are quite 
different in both structure and manifestation), 
autocorrelation and scaling in time of return 
data and the aggregation of single-instrument 
liquidity VaR into portfolio liquidity VaR 
(Umut, 2004: 315) all involve non-trivial and 
computer-intensive implementation.

This article explores the dual and related 
problems of:

1.	 adjusting for endogenous liquidity (without 
invoking the square root of time rule), 

2.	 the incorporation of individual liquidity-
adjusted VaRs into portfolio liquidity-
adjusted VaR 

and introduces a technique to integrate these 
twin methodologies.

Section 2 explores the available literature 
on liquidity risk from an endogenous and 

exogenous viewpoint. The calculation of each –  
with associated implementation difficulties – is 
also discussed here. 

A brief literature survey on associated topics, 
such as the scaling of volatility with the square 
root of time and the autocorrelation of equity 
returns, are also examined. This section is by 
no means exhaustive and aims to provide only a 
general background to what is rapidly becoming 
a large body of research.

Section 3 provides a brief overview of the 
mathematical complexity of endogenous 
liquidity risk and provides the basis for extending 
previous work. The problems and limitations 
of the current research are explored and some 
questions are posed which are then answered in 
Section 4, which introduces a formal explanation 
of a new portfolio liquidity VaR measure. 
Section 5 presents the results of simulation 
trials conducted on market data and Section 6 
concludes the article.

2 
Liquidity risk

Liquidity may be defined as a range of character-
istics rather than a one-dimensional attribute 
of assets and of the markets on which they are 
traded. It is also a relative concept, as the more 
liquid the asset, the more easily it is traded for 
cash, i.e. at low cost, at short notice and with 
no risk of a notable change in price. A perfectly 
liquid market would therefore guarantee a single 
bid/ask price at all times, irrespective of the 
quantities being traded. Financial markets, even 
those deemed most liquid, conform less than 
perfectly to this ideal configuration. Liquidity 
risk is thus the risk of being unable to liquidate 
or hedge a position immediately and at current 
market prices.

The use of VaR as the standard market risk 
measure has enjoyed ever-increasing popularity 
since its formulation in the late 1980s: it is 
now the most widely-used risk metric for 
the determination of market risk (Holton, 
2003: 405). Whilst considerable attention has 
been given to the measurement of financial 
instrument volatility and correlation as well as 
the incorporation of these values into portfolio 
VaR, the liquidity risk of these instruments 
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remains severely under-examined. It is included 
in standard VaR calculations only in an ad hoc 
fashion, namely by increasing the time horizon 
over which VaR is calculated to account for 
the time taken to liquidate a large position (JP 
Morgan, 1996). Not only does this technique not 
distinguish between exogenous and endogenous 
liquidity (defined and discussed below), but it 
employs the “square root of time” rule, in which 
it is assumed that no autocorrelation exists 
between rates of return from one measurement 
period to another. This assumption of a lack of 
autocorrelation allows for simple arithmetic 
summation of individual variances to produce 
the overall “period under investigation” 
variance. Thus, for example:

variance10day = 10.variance1day,

and, as a direct consequence this leads to the 
statistical conclusion that:

.10day day10 1=v v .

This assumption has been challenged over the 
past decade by several authors (see for example, 
Diebold (1996) and Blake et al., (2000)). In 
addition, Danielsson and Zigrand (2006: 
2711) recently again demonstrated that the 
square root of time rule leads to a systematic 
underestimation of risk – but also found that 
the degree of underestimation worsens with 
time horizon, jump intensity and confidence 
level. They conclude that despite the widespread 
application and implementation of the square 
root of time rule in the Basel regulatory 
accords, it nevertheless fails to address the 
objective of the Basel accords. It is clear that 
a more thorough investigation into the nature 
of liquidity risk and its effect on portfolios of 
illiquid instruments is required.

Two types of liquidity risk have been identified, 
namely exogenous and endogenous liquidity 
risk. These are defined below.

(a)	 Exogenous liquidity risk is the result of 
market characteristics; it is common to all 
market players and unaffected by the actions 
of any one participant (Bangia et al., 1998). In 
response to a market shock (and the resultant 
loss of predictability), a vicious cycle with a 

corresponding loss of liquidity is initiated. 
The perceived need to hold larger prudential 
reserves in situations of greater uncertainty 
along with reduced liquidity and leverage 
may not break the self-reinforcing dynamics 
of market dislocations. Exogenous liquidity 
can be affected by the joint action of all or 
almost all market participants as occurred 
in several markets in the summer of 1998 
(Lowenstein, 2002). The market for liquid 
securities, such as G7 currencies, is typically 
characterised by heavy trading volumes, 
stable and small bid-ask spreads, stable 
and high levels of quote depth. Liquidity 
costs may be negligible for such positions 
when marking to market provides a proper 
liquidation value. In contrast, markets in 
emerging currencies or thinly traded junk 
bonds are illiquid and are characterised by 
high volatilities of spread, quote depth and 
trading volume.

(b)	 Endogenous liquidity risk, in contrast, is 
specific to the position in the market and 
varies across market participants (Bangia 
et al., 1998). The exposure of any one 
participant is affected by the actions of 
that participant. It is mainly driven by the 
size of the position: the larger the size, the 
greater the endogenous illiquidity. If the 
market order to buy/sell is smaller than the 
volume available in the market at the quote, 
then the order transacts at the quote. In 
this case the market impact cost, defined 
as the cost of immediate execution, will be 
half of the bid-ask spread. If the size of the 
order exceeds the quote depth, the cost of 
market impact will be higher than the half-
spread. The difference between the total 
market impact and half-spread is called the 
incremental market cost, and constitutes the 
endogenous liquidity component.

Le Saout (2002) reported that neither exogenous 
liquidity risk (which accounts for about half of 
total market risk) nor endogenous liquidity 
risk (also a potentially significant component 
of market risk) should be ignored by financial 
institutions subject to market risk.

This section introduced liquidity risk as an  
autonomous and important component of 
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overall portfolio risk and provided broad 
definitions of the different types of liquidity 
encountered in the market. The following 
section supplies a literature review of relevant 
liquidity risk research.

3 
Literature survey

Recent work has begun to incorporate vanishing 
liquidity in times of crisis. Le Saout (2002) 
provides a good review of liquidity risk in VaR 
models and gives a comprehensive overview of 
recent research in the field. 

Lawrence and Robinson (1995: 64) were 
among the first to identify and establish that 
conventional VaR models often exclude asset 
liquidity risk. They argued that the best way 
to capture liquidity issues within the VaR 
framework would be to match the VaR time 
horizon with the time investors believed it could 
take to exit or liquidate the portfolio. They 
established that the liquidation of a portfolio 
over several trading days generated additional 
liquidity costs. 

Diebold et al. (1996) pointed out that the 
scaling of volatilities by the square root of time is 
only applicable if log changes of price returns are 
i.i.d. (independently and identically distributed) 
and, in addition, normally distributed. They 
noted that high frequency financial asset returns 
are not i.i.d. and that, even if they are conditional 
mean independent they are definitely not mean 
variance independent (see also Bollersev, Chou 
& Kroner 1992: 20 and Diebold & Lopez 1995: 
433 for evidence of strong volatility persistence 
in financial asset returns.) Diebold et al. (1996) 
showed that scaling by the square root of time 
magnifies the volatility fluctuations i.e. scaling 
results in large conditional variance fluctuations 
of long horizon returns, when in fact the 
opposite is true.

Jarrow and Subramanian (1997: 171, 
2001: 450) considered optimal liquidation 
of an investment over a fixed horizon. They 
characterised the costs and benefits of block 
sales versus slow liquidation and they proposed 
an endogenous liquidity adjustment to the 
standard VaR measure. The model requires 
three quantities which increase the loss level 

– namely a liquidity discount, the volatility of the 
liquidity discount and the volatility of the time 
horizon to liquidation. The authors themselves 
acknowledge that traders or firms must collect 
time series data on the shares traded, prices 
received and time to execution in order to 
estimate these quantities. Whilst this model is 
robust and fairly easy to implement, estimating 
these quantities is by no means trivial. Indeed, 
some may only be determined empirically with 
the accompanying introduction of significant 
bias.

Fernandez (1999: 2) examined liquidity risk in 
the aftermath of the 1998 LTCM liquidity crisis. 
He argued that:

“…financial markets are undergoing 
rapid structural change, which may be 
contributing to liquidity risk. These changes 
along with rising homogeneity of market 
participants’ behaviour are increasing 
concentration and ‘herding behaviour’ 
and eliminating ‘friction’ which may prove 
disadvantageous in a market correction.” 
(Fernandez, 1999: 3)

Fernandez concluded that no single measure 
captured the various aspects of liquidity in 
financial markets, but rather a composite 
of measures, incorporating quantitative and 
qualitative factors. His treatment of the 
problem, however sound, does not address the 
mathematical issues underlying this complex 
problem. 

Bangia et al. (1999: 71) explored exogenous 
liquidity risk. They treated the liquidity risk and 
market risk jointly and made the assumption 
that in adverse market environments extreme 
events in returns and extreme events in spreads 
occur concurrently. They noted that while the 
correlation between mid-price movements 
and spreads was not perfect – it was strong 
enough during extreme market conditions to 
encourage the treatment of extreme movements 
in market and liquidity risk simultaneously. They 
incorporated both a 99th percentile movement in 
the underlying and a 99th percentile movement 
in the spread. 

Almgren and Chriss (1999: 59) examined 
endogenous liquidity risk by considering the 
problem of portfolio liquidation. They aimed 
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to minimise a combination of volatility risk 
and transaction costs arising from permanent 
and temporary market impact. From a simple 
linear cost model, they built an efficient frontier 
in the space of time-dependant probability. 
They considered the risk-reward trade-off both 
from the point of view of classic mean-variance 
optimisation and the standpoint of VaR. Their 
analysis led to general insights into optimal 
portfolio trading, and to several applications 
including a definition of liquidity-adjusted 
VaR.

Hisata and Yamai (2000: 84) proposed a 
practical framework for the quantification 
of liquidity-adjusted value-at-risk which 
incorporated the market liquidity of financial 
products. Their framework incorporates the 
mechanism of the market impact caused by the 
investor’s own dealings through adjusting Value-
at-Risk according to the level of market liquidity 
and the scale of the investor’s position. In 
addition, Hisata and Yamai (2000: 86) proposed 
a closed-form solution for calculating liquidity-
adjusted VaR as well as a method of estimating 
portfolio liquidity-adjusted VaR.

Erwan (2002: 11) demonstrated that the 
standard value-at-risk model largely neglects 
the liquidity aspect of market risk because no 
single measure captures the various aspects of 
liquidity in financial markets. Erwan (2002: 8) 
extended the liquidity adjusted value-at-risk 
model developed by Bangia et al. (1999) by 
incorporating a weighted average spread to bid 
and offer prices and applied the resulting model 
to the French stock market. Both endogenous 
and exogenous liquidity risk were found to be 
important components of market risk.

Çetin et al. (2004) approach assumes the 
existence of a stochastic supply curve for a 
security’s price as a function of transaction size. 
Specifically, a second argument incorporates the 
size (number of shares) and direction (buy versus 
sell) of a transaction to determine the price at 
which the trade is executed. For a given supply 
curve, traders act as price takers. The more 
liquid an asset, the more horizontal its unique 
supply curve. In the context of continuous 
trading, necessary and sufficient conditions on 
the supply curve’s evolution are characterised 
such that no arbitrage opportunities arise in 

the economy. Furthermore, given an arbitrage 
free evolution for the supply curve, conditions 
for an approximately complete market are 
also provided. In the most general setting with 
unrestricted predictable trading strategies, 
Çetin et al. obtain three primary conclusions 
with respect to the pricing of derivatives. 
First, all liquidity costs are avoidable when 
(approximately) replicating a derivative’s payoff 
using continuous trading strategies of finite 
variation. Second (and as a consequence of the 
previous conclusion) the derivative’s price is the 
price obtained by ignoring the bid-ask spread 
and other illiquidities. Third, no implied bid-ask 
spreads or illiquidities exist for a derivative’s 
price. Note that these conclusions follow from 
continuous trading of infinitesimal quantities. 
Although related mainly to derivative pricing, 
this work was used by Jarrow and Protter (2005: 
9) to modify current risk measures to account for 
liquidity risk, though they admit that although 
more complex adjustments are possible, these 
await subsequent research. 

Angelidis and Benos (2005) relaxed the 
traditional, yet unrealistic, assumption of 
a perfect, frictionless financial market (i.e. 
investors can either buy or sell any amount of 
stock without causing significant price changes). 
Angelidos and Benos extended the work of 
Hausman et al. (1992: 323) and Madhavan et al. 
(1997: 1041) (who argued that traded volume 
can explain price movements) and developed 
a liquidity VaR measure based on spread 
components, following the work of Bangia et al. 
(1999: 72). Under this framework, the liquidity 
risk was decomposed into its endogenous and 
exogenous components, thereby permitting an 
assessment of the liquidation risk of a specific 
position. As with much other research, this 
relevant and detailed work does not address 
portfolio liquidity – the chief focus of this 
article.

The problem of ignoring liquidity risk is 
amplified in – but not confined to portfolios 
which consitute – hedge funds. Hedge fund 
manager styles were addressed by L’Habitant 
(2000: 12, 2001: 18) who noted that there was a 
need to introduce new quantitative tools to assist 
investors assessing the investment characteristics 
and the risks of hedge funds. Using only net asset 
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values from a hedge fund, L’Habitant proposed 
a methodology to identify strategic and tactical 
hedge fund asset allocations and compare their 
performance against an ad-hoc benchmark. The 
method on which he relied was a returns-based 
style analysis introduced by Sharpe (1988). 
L’Habitant also notes that:

“…there are numerous directions for future 
research. In particular, the framework 
presented in this paper does not incorporate 
all the risk components to which a hedge 
fund investor is exposed. For instance, 
we have completely omitted credit and 
liquidity risks, which are also essential parts 
of the full risk picture of a hedge fund.” 
(L’Habitant, 2001: 13).

This section provided a literature review of 
recent research in the field of liquidity risk as 
well as insight into some of the methods which 
have been developed to mitigate and manage 
it. Hisata and Yamai (2000: 90) provide – to 
our knowledge – the only coherent portfolio 
approach to liquidity risk. The next section will 
explore the possibility of combining Jarrow 
and Subramanian’s (1997, 2001) – henceforth 
JS-model (for evaluating individual instrument 
liquidity-adjusted VaR – henceforth LVaR) and 
standard portfolio theory to produce a robust 
portfolio LVaR approach under normal trading 
conditions, i.e. endogenous liquidity risk. This 
technique represents a variation on Hisata and 
Yamai’s (2000: 90) portfolio approach, but also 

incorporates several elements discussed by 
them. The aim is thus to construct a liquidity-
adjusted VaR (LVaR) at a portfolio level.

4 
Liquidity value-at-risk 

Whilst many LVaR models exist, the JS model 
is increasing in importance as the endogenous 
liquidity model of choice (for example, see Umut 
(2004: 322). Although Çetin’s (2004) work is 
currently enjoying some popularity – see Jarrow 
and Protter (2005: 12) – more work is required 
before the adjustments recommended can 
be effectively and robustly implemented into 
existing VaR models). The JS model’s results 
will be used later to combine individual LVaRs 
into a portfolio LVaR. No attempt will be made 
here to reproduce in full the underlying theoretical 
framework of the JS model. Nevertheless, it is 
instructive to provide a brief summary of the 
structure and constituents of the JS model 
equations. Having established this JS model 
overview, the individual instrument LVaRs will 
be combined using standard portfolio theory 
to produce a portfolio LVaR equation. This 
formula will then be tested on actual profit and 
loss and accompanying non-liquidity-adjusted 
VaR data from several South African equity 
portfolios and the results compared.

The equation governing liquidity adjusted VaR 
according to the JS model is given by:

. . . . .lnLVaR S E S E c S –CI E S lnJS E S c Sn= + + +t n v v vD D D^ ^` ^` ^h h j h jh7: 7A DA% / 	 (1)

where 

t			  is the quantity of equity purchased (or short-sold)

S			  is the equity price (hence t × S is essentially the nominal amount invested: ie quantity × 
	 price)

n 			  is the average portfolio return

( )E SD 	is the expected value of the time horizon to liquidation

c(S)			 is the liquidity discount – ie the difference between the market value of a trader‘s position 
	 and its value when it is ultimately liquidated

CI			  is the confidence interval

SvD 			 is the volatility of the time horizon to the position’s liquidation

Ev 			  is the equity return volatility and

[ ( )]ln c Sv 	is the volatility of the natural logarithm of the liquidity discount.
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The standard parametric VaR equation (Dowd 
et al.., 2003) is given by:

. . . .VaR N T – CI Tpn v= ` j	 (2)

where 

N	 is the notional investment amount

n 	 is the average T–period return4 

CI	 is the confidence interval

T 	is the square root of the time horizon to 
liquidation5 and

pv 	 is the portfolio volatility.

Using matrix notation, the portfolio volatility, 
pv , for two stocks6 A and B, is written as (Dowd 

et al., 2003):

. .w w
w
wp A B

A

B A BA

A B AB

B

A

B

2

2v =

v
v v t

v v t
v^

e d
h

o n
	 (3)

where wA and wB are the investment weights 
in the respective equities, Av  and Bv  are the 
respective equity return volatilities and ABt  is 
the correlation between the equity returns of 
A and B. The central matrix under the square 
root is the covariance matrix. The diagonals are 
the constituent variances and the off-diagonal 
terms are identical since the matrix is positive 
semi-definite.

Mechanisms which govern equity risk are 
broadly similar – regardless of the models 
used to describe these. It is therefore no 
coincidence that the JS model (Equation 
1) closely resembles the parametric VaR 
equation (Equation 2) in which the terms 

. .N Tn  a n d  . . lnS E S E c S+t n D^ ^`h h j7 A% / 
are analogous as are the . .CI Tpv  and 

. . .CI E S lnE S c S+ +v n v vD D^` ^h jh7 A  terms.
Using the common assumption that the 

average portfolio return is sufficiently small to 

be considered equal to 0 per cent (JP Morgan, 
1996: 8), Equation 1 simplifies to

LVaRJS = . . .S CI E S lnE c S+t v vD^` ^h jh7 A 	 (4)

and Equation (2) to:

LVaRsimple = . . .N CI Tpv 	 (5)

where the portfolio VaR, VaRp, has been 
replaced in Equation 5 with LVaRsimple or the 
“simple liquidity adjusted VaR” since the square 
root of time term reflects the simple manner 
in which liquidity is taken into account in the 
standard VaR model.

The goal now is to expand the mathematics 
of Equations 4 and 5 (liquidity-adjusted VaRs 
for single instruments) to incorporate portfolios 
of instruments. 

Using Equation 3, Equation 5 may be written 
(in matrix notation):

LVaRsimple = . . . . .N CI w w
w
w TA B

A

B A BA

A B AB

B

A

B

2

2
v

v v t
v v t

v^
e c

h
o m

Decomposing the covariance matrix into its constituent volatilities and correlation matrices 
gives:

LVaRsimple = . . . . .N CI w w
w
w T

1
1A A B B BA

AB A A

B Bt
t

v v
v
v^

d c
h

n m

Extending the square root and incorporating the notional investment and liquidation horizon 
gives:

LVaRsimple = . . . . . . . .
. . .
. . .N w CI T N w CI T

N w CI T
N w CI T

1
1A A B B BA

AB A A

B Bv v
v
vt

t
^ ^_

d
^

^
e

h h i
n

h

h
o
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which may be rewritten as:

LVaRsimple = . .LVaR LVaR
LVaR
LVaR

1
1simple

A
simple
B

BA

AB simple
A

simple
Bt

t
`

d f
j

n p 	 (6)

where

. . . .LVaR N w CI Tsimple
A

A A= v  and . . . .LVaR N w CI Tsimple
B

B Bv= .

It is not unreasonable to conclude, in an analogous manner to Equation 6, that LVaRJS (Equation 
4) may be written:

LVaRJS = . .LVaR LVaR
LVaR
LVaR

1
1JS

A
JS
B

BA

AB JS
A

JS
Bt

t
_

d d
i

n n 	 (7)

where the component LVaRJS are defined by Equation 4.

Equations 6 and 7 both purport to estimate the 
portfolio liquidity adjusted VaR. Since VaR is a 
one day forecast of a portfolio’s P&L, the VaR 
may be calculated using Equations 4 and 5 above 
and the results may be compared with realised 
P&L from portfolio returns.

In order to compare results, data from 14 
South African equity portfolios were assembled. 
These included realised P&L data as well as 
all of the required inputs for both the LVaRJS 
model (Equation 4) and the LVaRsimple model 
(Equation 5).

The quantity of equity purchased, t , is 
determined using actual trading quantities 
executed, ie successful bids or offers. Equity 
prices, S, are determined at the time of the 
transaction’s execution, while the expected 
value of the time horizon to liquidation – E(DS)  
– is the simple average time taken between 
placing a bid/offer and the successful execution 
of the transaction. The liquidity discount, c(S), 
measures the difference between the market 
value of traders’ positions at the time of bid/
offer and the value when they are ultimately 
liquidated. The volatility of this time horizon 
(from bid/offer to the position’s liquidation), 

SvD , may also be estimated from liquidity 
discount data, c(S), and Ev  is the exponentially 
weighted moving average volatility of the equity 
data. The volatility of the natural logarithm 

of the liquidity discount, ln c Sv ^ h7 A, may also be 
estimated from liquidity discount data, c(S).

Liquidity adjusted VaRs were estimated 
using Equations 6 and 7. Correlation values 
for both methods were determined using a 
250-day rolling window of equity returns and 
the exponentially weighted moving average 
technique (JP Morgan, 1996: 78) with decay 
constant m  = 0.92 for South African equities.

These data provide an opportunity to back 
test the VaR forecasts using both the simple 
approach (Equation 5) and the JS model 
approach (Equation 4) against realised P&Ls. 
The results of this investigation are presented 
in the following section.

5 
Results

The forecast LVaRJS (Equation 7) was calculated 
for each equity portfolio, using parameters 
obtained from portfolio data and compared with 
the daily forecast 95 per cent LVaRsimple (Equation 
6). These are shown for only four different 
portfolios7 in Figure 1(a) through (d). In line 
with common practice, the measured daily P&L 
is indicated on the same graph in each case (as 
a means of comparing forecast 95 per cent VaR 
with realised P&Ls). 



SAJEMS NS 11 (2008) No 2	 211	

Figure 1 
Realised P&Ls, simple 95% LVaRsimple and 95% LVaRJS for four separate equity portfolios (a)  

through (d) over a 466-day period between January 2004 and November 2006

The LVaRJS were found to be more volatile than 
the LVaRsimple, due to the combination of the two 
volatility terms, namely E SEv D^ h  and ln c Sv ^ h7 A 
over short timescales (days), but the two LVaR 
terms track one another closely over longer 
timescales (months). 

A section of data (100 days) was selected 
from the portfolio represented in Figure 1(a) 
to highlight obscured detail. These are shown in 
Figure 2. The circled regions show four cases in 
which the LVaRsimple forecast the VaR incorrectly, 
whilst the LVaRJS succeeded. 
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Figure 2 
Detail of time series (100 days) selected from fund P/L data represented in Figure 1(a)

Back testing the accuracy of VaR forecasts against 
realised P&L is not only common practice but 
also a requirement by many bank regulators 
to establish the validity of banks’ internal VaR 
models. The Basel committee (BIS, 2004) has 
stipulated that, for VaR measured at a 95 per cent 
confidence interval over 250 days, a maximum 
of five exceptions (ie cases in which the forecast 
VaR underestimated the following day’s P&L) are 
allowed over and above the 5 per cent expected 
exceptions (due to the 95 per cent confidence 
interval). The more exceptions that occur than 
those allowed by the Basel accord incur greater 
and greater capital charges for market risk up to 
a maximum of ten. If more than ten exceptions 
in a 250 day period occur, the regulator will 
order an investigation into the bank’s market risk 

model. Since it is in the best interests of banks 
to install and maintain accurate VaR models, the 
returns from 14 equity portfolios were back tested 
to ascertain the accuracy of the two liquidity-
adjusted VaR models.

Using the 466 days of data used to generate 
Figure 1, the number of exceptions (ie instances 
in which VaR forecasts underestimated the 
following day’s losses) were measured using 
both LVaRsimple and LVaRJS for all 14 portfolios in 
this sample. Whilst it is expected that 5 per cent 
of forecasts will be ‘outliers’ or exceptions – by 
definition – Table 1 (and Figure 3) below shows 
that the 95 per cent LVaRJS forecast estimate is 
the more accurate than the 95 per cent LVaRsimple, 
especially at times of high market turbulence (ie 
times of potential reduced liquidity). 

Table 1 
Comparison of 95% LVaR forecast exceptions measured over 466 days for all portfolios.  

Note that 5% × 466 = 23 exceptions are expected 

Fund 
number

95 per cent LVaRsimple 95 per cent LVaRJS

Exceptions % of total (5% expected) Exceptions % of total (5% expected)

1 25 5.38% 17 3.66%

2 25 5.38% 20 4.30%

3 35 7.53% 28 6.02%

4 33 7.10% 25 5.38%

5 31 6.67% 24 5.16%

6 31 6.67% 26 5.59%
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7 30 6.45% 25 5.38%

8 33 7.10% 29 6.24%

9 26 5.59% 22 4.73%

10 25 5.38% 21 4.52%

11 33 7.10% 27 5.81%

12 27 5.81% 22 4.73%

13 26 5.59% 20 4.30%

14 26 5.59% 22 4.73%

Figure 3 
Graphical comparison of VaR forecast accuracy for both LVaRsimple and LVaRJS techniques clearly 

showing – for all portfolios – superior accuracy using the latter

VaR has been criticised for failing to forecast 
the degree of inaccuracy should an exception 
occur. Although this gap has been largely 
plugged by expected shortfall (ES) measures 
(Yamai and Yoshiba, 2002), the accuracy of 
liquidity VaR measures could be compared 
using the portfolio data from this study. Thus, 
in addition to the number of exceptions, the 
Rand difference between realised P&L and 
forecast VaR was also determined using both  

measures of liquidity VaR. The results are shown 
in Figure 4 below. For each of the 14 portfolios 
here investigated – each using 466 data points 
– the LVaRsimple measure underestimated actual 
losses to a greater extent than the LVaRJS. 
For LVaRsimple the average underestimation 
was 7.5 per cent with a standard deviation, 
v  = 3.1 per cent while for LVaRJS the average 
underestimation was only 4.2 per cent with  
v  = 1.9 per cent.
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Figure 4 
Comparison of VaR forecast versus realised P&L for both LVaRsimple and LVaRJS techniques.  

For all portfolios, the latter’s estimated losses were more accurately forecast.

6 
Conclusion

LVaR using the JS methodology has been 
successfully incorporated into a portfolio 
framework. It has been shown to be superior to 
LVaR estimated using the simple square root of 
time technique using realised P/L (in terms of 
both frequency of underestimation and accuracy 
of P&L estimation) values as a comparison. 
Simple LVaR employs only the square root of 
time as a suitable scaling factor to accommodate 
liquidity constraints, while the JS LVaR model 
uses the JS approach to liquidity risk. The latter 
has already been demonstrated to be superior to 
the square root of time model at the individual 
instrument level (Jarrow & Subramanian,  
1997: 172).

The implementation of the JS model is by 
no means simple: obtaining and estimating the 
required parameters is onerous and requires 
constant recalculation to accommodate the 
rapidly changing portfolio LVaR. However, 
these parameters are available (though often 
not disclosed publicly) and, having them, 
incorporation into a portfolio model is relatively 
straightforward and requires only knowledge of 
the linear correlations between equity returns to 
complete the calculation as well as a technique 
borrowed from standard portfolio theory.

The payoff received from this complex 
calculation is a much-improved VaR forecast 
with greater accuracy than that obtained from 
standard VaR models.

Endnotes

1	 Generalised Autoregressive Conditional 
Heteroscedasticity.

2	 The Bank’s primary exposure to counterparty credit 
risk is through its investment portfolio, however, it 
can also have exposure to derivative counterparties 
(which may default on obligations) in the trading 
book. Banks seek to minimise the risk that a credit 
loss from a counterparty default or downgrade 
could cause either a financial loss or damage 
the Bank’s reputation. Basel II addresses this 
counterparty risk problem in detail, but leaves the 
basic tenets of the measurement and management 
of market risk untouched (BIS, 2005).

3	 This study is by no means confined to the risks 
associated with hedge funds – these funds merely 
amplify the effects of liquidity risk through their 
unique investment strategies.

4	 It is commonly assumed that µ = 0 (JP Morgan, 
1996: 8).

5	 In the standard parametric equation, only the term  
T  is assumed to adjust for market illiquidity.

6	 This portfolio volatility equation may, of course, be 
extended for n stocks.

7	 Similar results were obtained for the remaining ten 
portfolios in the data sample.
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