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This paper presents a method for interpolating yield curve data in a manner that ensures positive and 

continuous forward curves. As shown by Hagan and West (2006), traditional interpolation methods suffer 

from problems: they posit unreasonable expectations, or are not necessarily arbitrage-free. The method 

presented in this paper, which we refer to as the “monotone preserving       method", stems from the work 

done in the field of shape preserving cubic Hermite interpolation, by authors such as Akima (1970), de Boor 

and Swartz (1977), and Fritsch and Carlson (1980). In particular, the monotone preserving       method 

applies shape preserving cubic Hermite interpolation to the log capitalisation function. We present some 

examples of South African swap and bond curves obtained under the monotone preserving       method. 
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To a large extent, this paper is motivated by the work of Patrick Hagan and Graeme West (see Hagan & 

West, 2006; Hagan & West, 2008)). As a sign of appreciation, we would like to dedicate this paper to the 

memory of Graeme West. 
 

1 

Introduction 

A yield curve is a plot depicting the spot rate 

of interest for a continuum of maturities, in 

some time interval. Yield curves have a 

number of roles to perform in the functioning 

of a debt capital market, including: 

1) Valuation of future cash flows; 

2) Calibration of risk-metrics; 

3) Calculation of hedge ratios; and 

4) Projection of future cash flows. Akima 

(1970) 

As noted by Andersen (2007) only a limited 

number of fixed income securities trade in 

practice, very few of which are zero-coupon 

bonds. As such, a model is required to 

interpolate between adjacent maturities of 

observable securities, and to extract spot rates 

from more complicated securities such as 

coupon bonds, swaps, and Forward Rate 

Agreements (FRAs). As noted by the Bank For 

International Settlements (2005), such models 

can broadly be categorised as parametric or 

spline-based models. 

Under parametric models, the entire yield 

curve is explained through a single parametric 

function, with the parameters typically estimated 

through the use of some least-squares 

regression technique. Important contributions 

in this field have come from Nelson and Siegel 

(1987) and Svensson (1992). As noted by 

Andersen (2007) the resulting fit of such 

parametric functions to observed security 

prices is typically too loose for mark-to-market 

purposes, and may result in highly unstable 

term structure estimates. As such, financial 

institutions involved in the trading of fixed 

income securities rarely rely on parametric 

models. 
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Under spline-based models, the yield curve 

is made up of piecewise polynomials, where 

the individual segments are joined together 

continuously at specific points in time (called 

knot points). Such methods involve selecting a 

set of knot points, extracting the corresponding 

set of spot rates, and finally interpolating in 

order to obtain a spot rate function. McCulloch 

(1971) was the first article to suggest 

modelling the yield curve in such a fashion. 

Various methods exist for extracting the set 

of zero-coupon spot rates corresponding to the 

chosen set of knot points. Typically, a 

multivariate optimisation routine is employed 

whereby the objective is to establish the set of 

spot rates, which, when combined with an 

appropriate method of interpolation, produces 

a yield curve that minimises pricing errors. 

Such methods have been proposed by 

McCulloch (1971), McCulloch (1975), Vasicek 

(1977), Fisher, Nychka and Zervos (1995), 

Waggoner (1997) and Tangaard (1997). The 

problem with this type of approach, however, 

is that the resulting yield curve is rarely 

capable of exactly pricing back all of its inputs. 

Hagan and West (2006) describe an 

alternative procedure for extracting the set of 

spot rates which corresponds to the chosen set 

of knot points. These authors describe a 

process called bootstrapping, whereby: 

1) The set of knot points are chosen to 

correspond to the maturity dates of the set 

of input instruments. 

2) The set spot rates which correspond to the 

set of knot points are found via a simple 

iterative technique. 

The abovementioned iterative procedure will 
converge to a set of spot rates, which, when 

combined with a chosen method of inter-

polation, will produce a curve that exactly 

prices back all input securities. This bootstrap 

is a generalisation of the iterative bootstrap 

discussed in Smit (2000). The process of 

bootstrapping, however, was first described in 

Fama and Bliss (1987). 

Regardless of how the spot rates 

corresponding to the chosen set of knot points 

are extracted, careful consideration has to be 

given to the chosen method of interpolation. 

Some methods result in discontinuities in the 

forward curve whilst others are incapable of 

ensuring a strictly decreasing curve of discount 

factors (see Hagan & West, 2006). Both 

scenarios are unacceptable in a practical 

framework. Discontinuities in the forward 

curve imply implausible expectations about 

future short term interest rates (unless the 

discontinuities occur on or around meetings of 

monetary authorities), whilst a non-decreasing 

curve of discount factors implies arbitrage 

opportunities. 

Hagan and West (2006) introduce the 

monotone convex method of interpolation, and 

show that this method is capable of ensuring 

positive, and mostly continuous forward curves. 

The monotone convex method does, however, 

under certain circumstances, produce forward 

curves with material discontinuities. In this 

paper, we present a method for interpolating 

yield curve data in a manner that ensures 

positive and continuous forward curves. 

The objective of this paper is not to 

introduce a “perfect” method for interpolating 

yield curve data (in fact, our opinion is that 

such a method does not exist), but rather to 

present a method that practitioners can use 

when they require forward curves that are both 

positive and continuous. To our knowledge, 

the method presented in this paper is the only 

method capable of achieving this feat. 

2 

Arbitrage-free interpolation 

In an effort to be consistent with the notation 

of Hagan and West (2006), we define: 

•        ; the price at time   , of the zero-

coupon bond maturing at time  . 

•        ; the continuously compounded 

spot rate of interest, applicable from time 

   to time  . 

•        ; the instantaneous forward rate, as 

observed at time   , applicable to time  . 

For ease of notation and without loss of 

generality, we will assume for the remainder of 

this paper that     , and omit the    term 

from the abovementioned notation. 

The functions           and      are 

related through the following equations: 

             (1) 

and 
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       (2) 

Equations (1) and (2) imply that if         
for some        , then      is not monotone 

decreasing at  . If      is not monotone 

decreasing, then an arbitrage opportunity must 

exist. In order to prove this statement, consider 

the scenario where            , for      . 

Under such circumstances, and investor would 

be able to buy a zero-coupon bond maturing at 

time   , and simultaneously sell a zero-coupon 

bond maturing at time   , for an immediate 

profit of            . At time    the investor 

would simply place the received unit of 

currency under his/her mattress, and pay it to 

the buyer of the    bond at   . 

Note, if      represents the price of an 

inflation-linked zero-coupon bond maturing at 

  , then the abovementioned arbitrage relation 

would not necessarily hold. Under such 

circumstances the cash inflows and outflows at 

  and    are not known in advance, seeing that 

they are inflation dependant. Hence, the cash 

inflow of             at    would not 

necessarily constitute a profit. 

When interpolating a set of rates that are 

arbitrage free (in the sense that the input set of 

discount factors are monotone decreasing), it is 

crucial that our interpolation function preserve 

this property. 

3 

Continuous forward curves 

McCulloch and Kochin (2000) point out that 

“a discontinuous forward curve implies either 

implausible expectations about future short-

term interest rates, or implausible expectations 

about holding period returns”. Considering the 

zero rates in Table 1; Figure 1 shows the 

forward curve obtained when applying linear 

interpolation on the log discount factors 

(Hagan & West, 2006 refer to this method of 

interpolation as the “Raw” method). 

 

Table 1 

Example illustrating the implications of a discontinuous  
forward curve 

      

0.01 5.0 

0.25 5.2 

0.50 5.6 

0.75 5.6 

1.00 5.7 

 

Figure 1 can be interpreted as the curve that 

depicts the evolution of overnight deposit rates 

under the term structure given in Table 1. 

Along the entire curve, overnight rates are seen 

to jump at each of the knot points used to 

construct the curve. Clearly, this type of 

behaviour is implausible, and as such, we 

should avoid using such curves to value 

derivative instruments (especially instruments 

that rely on forward curves to project future 

cash flows).  

When interpolating yield curve data, we 

would thus prefer to obtain a continuous 

forward curve (see, for example, Filipovic 

(2009) and James and Webber (2000) who also 

note that consistency with a dynamic term 

structure model is a desirable feature). 

4 

The basic interpolation function 

Consider the set of rates            for maturi-
ties           . When interpolating, we wish 

to establish a yield curve function     , for 

         , with the following properties: 

1)      should interpolate the data in the 

sense that         , for            . 

2)      should be continuous. 

3) In order to present arbitrage potential, the 
log capitalisation function should be 

monotone increasing (a monotone increasing 

capitalisation function implies a monotone 

decreasing discount function). This property 

should be relaxed when working with real 

rates. 
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4) The forward rate function     , for 

        , should be continuous. 

 

 

Figure 1 

Forward curve obtained when applying Raw interpolation to the rates in Table 1 

 
 

We postulate applying a shape preserving 

cubic Hermite method of interpolation to the 

log capitalisation function. For the remainder 

of this paper, we will refer to this method as 

the “monotone preserving      ” method. 

Consider the interpolant: 
 

                          
          

   (3) 

for          , and define           , 
and                       .  

Suppose the instantaneous set of forward 

rates            for maturities            is 

known a priori, and relax any arbitrage-free 

requirements (for the moment). It can then 

easily be shown (see Hagan and West (2006)) 

that: 

        

      

   
            

  

 

   
           

  
   

for               . 

The problem we face in practice is that the 

instantaneous forward rates are seldom 

observable. We will thus have to rely on an 

estimation method, and for this purpose, we 

postulate using a similar method to that 

proposed by Hagan and West (2006). We 

propose estimating   , for               , 

as the slope at   , of the quadratic that passes 

through the point              , for   
      . The instantaneous forward rates at the 

end points, i.e.    and    are chosen so as to 

ensure that   
    

   . 

The instantaneous forward rates are thus 

estimated as: 

   
       
       

   
       

         

      
(4) 

for              , whilst 

      

         

5 

The monotonicity region 

We now impose the condition that the log 

capitalisation function (     ) be monotone 

increasing. A monotone increasing       

function implies a positive forward curve (see 

equation 2). The work done in the field of 

shape preserving cubic Hermite interpolation, 

by authors such as Akima (1970), de Boor and 
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Swartz (1977), Fritsch and Carlson (1980) and 

Hyman (1983) suggest amending the estimates 

for   , for           . In particular, Hyman 

(1983) notes a simple generalisation of what 

was recognised by de Boor & Swartz (1977), 

namely that if       is locally increasing at   , 
and if: 

                  (5) 

then       will be monotone on the interval 

         , for             . Fritsch and 

Carlson (1980) independently developed the 

same monotonicity condition. We will enforce 

equation (5) in order to ensure that       is 

monotone increasing. 

We will use the analysis developed by 

Fritsch and Carlson (1980) to prove the 

monotonicity region for      , for         . 
Assume that          , for          . 

Equation (3) implies that: 
 

        
                

  

       
              

  
       

   
(6) 

for          , whilst       is given by: 

       
                

  

 
              

  
 

        
(7) 

In order to establish the monotonicity 

condition implied by equation (5), we need to 

distinguish between three distinct scenarios: 

1)              . Here      is a 

straight line connecting the points    and 

    . Since          , we observe that 

      , for            . 

2)              . Here      is a 

parabola which is concave down, implying 

that: 

                       (8) 

for            . 

3)              . Here      is a 

parabola which is concave up, i.e.      

has a unique minimum on the interval 

         , for            . Since         
 , it follows that if this unique minimum is 

greater than zero, then       , for 

           . 

The scenario where               
requires further analysis. In particular, observe 

that under this scenario,      has a local 

minimum at:  

      
                

              
  

(9) 

and the value of    at    is given by: 

         
              

 

              
  

(10) 

The function       will thus be monotone 

increasing on the interval          , if one of 

the following conditions is satisfied: 

1)     , or     . 

2)        . 

Fritsch and Carlson (1980) define         , 

and           , from where    and       

can be written as: 

      
            

          
  

(11) 

and  

                  (12) 

where  

            
           

          
  (13) 

Note, the condition               (i.e. 

the condition under investigation) is equivalent 

to the condition          . Equation 

(11) implies that       when: 

            (14) 

Similarly,      when: 

            

          
       

(15) 

which is equivalent to requiring that    
       . Since     , equation (12) 

implies that         when: 

            (16) 

It follows that       will be monotone 

increasing on the interval          , if one of 

the following conditions is satisfied: 
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1)            

2)            

3)            

4)          . 

The final condition stems from the fact that 

       when              , as 

established earlier. Note,            is the 

ellipse described by:  

                            (17) 

The abovementioned monotonicity constraints 

are graphically illustrated in Figure 2. The 

shaded areas represent the areas where       

will be monotone increasing. The area 

bounded by the   and   axis, and the dotted 

lines at     and     represents the de 

Boor and Swartz (1977) monotonicity region. 

This region implies that if        , then 

      will be monotone increasing. 

 

Figure 2 

Fritsch and Carlson monotonicity region 

 
 

Requiring that         is equivalent to 

requiring that          , and can be achieved 

by requiring that: 

                  (18) 

for             . In order to ensure that 

the function        for             is mono-

tone increasing, we can thus clamp    as 

follows: 

                          (19) 

for             . Note,      will be 

positive on the interval         provided:  

        

and similarly,      will be positive on the 

interval            provided  

          

Since        and        , the clamping 

proposed by equation (19) will ensure that  

      is monotone increasing, for           . 
If negative forward rates are allowed, i.e. when 

considering inflation-linked yield curve data, 

we will simply omit the clamping proposed by 

equation (19). 

6 

Extrapolation 

From equation (2) it follows that: 

     
 

 
        

 

 

 
(20) 

which implies that if            , then: 

                     
 

    

    

 

 
(21) 



SAJEMS NS 16 (2013) No 4:395-406 
 

401 
 

  

                    
 

    

 

A simple (and naive) method of extrapolation 

is obtained by assuming that      is constant 

before    and after   . More specifically, we 

will require that        , when     , and 

we will require that        , when     . 

Equation (21) implies that:  

                
 

 

    

 

 

(22) 

when     , whilst: 

                
 

  

  

               (23) 

when     . Note, the abovementioned method 

of extrapolation was specifically chosen to 

ensure continuity in      and     , at    and 

  . 

7 

Locality 

If we change the value of an input at ti, then 

we would like to know the interval            , 

on which the interpolated yield curve values 

change. Hagan and West (2006) define   and   

as locality indices, and use them to determine 

the degree to which an interpolation algorithm 

is local.  

Changing the value of    would clearly 

affect the values of      and   . It follows 

from equation (6) that changing the value of 

     would affect the values of    and     , 

whilst changing the value of    would affect 

the values of    and     . Changing the value of 

   thus affects the values of          and     , 

which in turn affects the coefficients 

             and     . The value of       will 

thus be affected on the interval             . It 
follows that the monotone preserving       

method has locality indices          . 

8 

Results 

Hagan and West (2006) use the rates given in 

Table 2 to illustrate the inadequacies of various 

methods of interpolation. The input set of 

discount factors are monotone decreasing, and 

the interpolated curve should preserve this 

property. 

 

Table 2 

Example used to illustrate the inadequacies of various methods of interpolation 

 

 

Figure 3 shows the spot and forward curves 

obtained by applying the monotone preserving 

      method to the rates in Table 2. The 

resulting forward curve is positive and 

continuous, a feat not be taken lightly; the 

monotone convex method is the only other 

method that achieves this feat for this 

particular example. 

 

 

 

 

     (%)    

0.1 8.1 0.922193691 

1 7 0.496585304 

4 4.4 0.172044864 

9 7 0.001836305 

20 4 0.000335463 

30 4 0.000123410 
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Figure 3 

Spot and forward curves obtained by applying the method presented in this  
paper to the rates in Table 2 

 

8.1 Monotonicity vs. continuity  

The method presented in this paper aims to 

ensure a positive and continuous forward 

curve, however, under certain circumstances, 

continuity is ensured at the expense of 

monotonicity. Consider the rates in Table 3, 

Figure 4 shows the corresponding spot and 

forward curves obtained by applying the 

monotone convex method, and monotone 

preserving       method. 

 

Table 3 

Example to illustrate the trade off between continuity and monotonicity 

              

0.1 5 5 5 

4 5 5 5 

10 5 5 5 

20 5 5 4.25 

30 4.5 3.5 3.125 

 

Figure 4 highlights the weaknesses of both 

methods: 

1) Under the monotone convex method,      

is seen to have a material discontinuity at 

        

2) Under the monotone preserving       

method, both      and      are increasing 

in the    to    year region, and then 

decreasing in the    to    year region. 

This behaviour is somewhat unintuitive; 

the input data suggests that both       and 

     should be constant in the    to    

year region. 

Figure 4 shows that under the monotone 

convex method, monotonicity trumps continuity, 

whilst the converse is true for the monotone 

preserving       method. When deciding on an 

appropriate method to interpolate yield curve 

data, the user has to decide what is more 

important for his/her particular purpose; 

monotonicity or continuity. Different users 

will have different criteria. 
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Figure 4 

Spot and forward curves obtained by applying the monotone convex, and the monotone  
preserving       methods to the rates in Table 3 

 

8.2 The South African swap curve 

Figure 5 is an example that illustrates the spot 

and 90-day forward curves obtained by 

bootstrapping the South African swap curve 

under the monotone convex, and the monotone 

preserving       methods. 

For this particular example, the spot and 

forward curves produced by the monotone 

convex, and the monotone preserving       

methods are seen to be remarkably similar. 

The fundamental difference between the two 

methods is, however, clearly illustrated: 

1) under the monotone preserving      

method, the forward curve is a set of 

parabolas joined together in a continuous 

fashion, whilst 

2) under the monotone convex method, the 

forward curve is also a set of parabolas, 

however, if on a specific segment, the 

monotonicity of the input data is 

compromised, the parabola is augmented 

(which can lead to discontinuities, as seen 

earlier). 
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Figure 5 

Spot and 90-day forward curves obtained by bootstrapping the South African swap  
curve on 15 February 2013 

  
(a) Monotone Convex (b) Monotone Preserving r(t)t 

 

8.3 The South African bond curve 

Figure 6 is an example that illustrates the spot 

and 90-day forward curves obtained by 

bootstrapping the South African bond curve 

under the monotone convex, and the monotone 

preserving       methods. Again, the fundamental 

difference between the two methods is clearly 

illustrated. 

 

Figure 6 

Spot and 90-day forward curves obtained by bootstrapping the South African bond  
curve on 15 February 2013 

  
(a) Monotone Convex 

(b) Monotone Preserving r(t)t 

 

9 

Conclusion 

In this paper, we presented a method for 

interpolating yield curve data in a manner that 

ensures positive and continuous forward 

curves (the monotone preserving       

method). Positive forward curves are essential 

from an arbitrage-free perspective, whilst dis-

continuous forward curves imply implausible 

expectation about future short term interest 

rates. 

The monotone preserving       exhibits 

some weaknesses: the forward curve is 

continuous but there are points of non-

differentiability (differentiable forward curves 

are often required to calibrate no-arbitrage 

term structure models, like the models of Ho & 

Lee (1986); Hull & White (1990); Cox, 

Ingersol & Ross (1985)), and under certain 
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conditions, continuity in the forward curve is 

preserved by sacrificing monotonicity in the 

forward curve. However, when interpolating 

yield curve data, all methods exhibit 

weaknesses; traditional methods either imply 

discontinuous forward curves, or they fail to 

ensure positive forward curves (sometimes both). 

The aim of this paper was not to introduce a

“perfect” method for interpolating yield curve 

data, but rather to present a method that 

practitioners can add to their arsenal when 

interpolating yield curve data. The onus is then 

on the practitioner to define the properties 

which he deems to be the most important, and 

to then apply the appropriate interpolation 

method. 
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